Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomol Struct Dyn ; : 1-13, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-2251739

ABSTRACT

Several drugs are now being tested as possible therapies due to the necessity of treating SARS-CoV-2 infection. Although approved vaccines bring much hope, a vaccination program covering the entire global population will take a very long time, making the development of effective antiviral drugs an effective solution for the immediate treatment of this dangerous infection. Previous studies found that three natural compounds, namely, tannic acid, 3-isotheaflavin-3-gallate and theaflavin-3,3-digallate, are effective proteinase (3CLpro) inhibitors of SARS-CoV (IC50 <10 µM). Based on this information and due to the high sequence identity between SARS-CoV and SARS-CoV-2 3CLpro, these three compounds could be candidate inhibitors of SARS-CoV-2 3CLpro. This paper explores the structural and energetic features that guided the molecular recognition of these three compounds for dimeric SARS-CoV-2 and SARS-CoV 3CLpro, the functional state of this enzyme, using docking and MD simulations with the molecular mechanics-generalized-born surface area (MMGBSA) approach. Energetic analysis demonstrated that the three compounds reached good affinities in both systems in the following order: tannic acid > 3-isotheaflavin-3-gallate > theaflavin-3,3-digallate. This tendency is in line with that experimentally reported between these ligands and SARS-CoV 3CLpro. Therefore, tannic acid may have clinical usefulness against COVID-19 by acting as a potent inhibitor of SARS-CoV-2 3CLpro.Communicated by Ramaswamy H. Sarma.

2.
J Mol Graph Model ; 107: 107970, 2021 09.
Article in English | MEDLINE | ID: covidwho-1272549

ABSTRACT

SARS-CoV-2 is the causative agent of the ongoing viral pandemic of COVID-19. After the emergence of this virus, it became a global public health concern and quickly evolved into a pandemic. Mexico is currently in the third position in the number of deaths due to SARS-CoV-2. To date, there have been several lineages of SARS-CoV-2 worldwide; in the Mexican population, two variants of the spike protein (S-protein) are found, localized at H49Y and D614G, which have been related to increased infectivity with respect to the wild-type S-protein. To understand how these differences impact the structural behavior of the S-protein of SARS-CoV-2, as well as binding with ACE2, we performed MD simulations combined with the molecular mechanics generalized Born/Poisson-Boltzmann surface area (MMGB(PB)SA) approach starting from X-ray crystallography data. Energetic and structural analysis showed that the differences in infectivity can be explained by differences in affinity of the protein-protein interface between the wild-type and mutant S-protein with ACE2. Conformational analysis showed that molecular recognition between the S-protein and ACE2 is linked to a decrease in the conformational flexibility of wild-type and mutant S-protein; however, an increase in the conformational mobility of ACE2 could also contribute to the binding affinity observed using the MMGB(PB)SA method.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Mexico , Mutant Proteins , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
J Biomol Struct Dyn ; 40(18): 8375-8383, 2022 11.
Article in English | MEDLINE | ID: covidwho-1180369

ABSTRACT

Ivermectin (IVM) is an FDA-approved drug that has shown antiviral activity against a wide variety of viruses in recent years. IVM inhibits the formation of the importin-α/ß1 heterodimeric complex responsible for the translocation and replication of various viral species proteins. Also, IVM hampers SARS-CoV-2 replication in vitro; however, the molecular mechanism through which IVM inhibits SARS-CoV-2 is not well understood. Previous studies have explored the molecular mechanism through which IVM inhibits importin-α and several potential targets associated with COVID-19 by using docking approaches and MD simulations to corroborate the docked complexes. This study explores the energetic and structural properties through which IVM inhibits importin-α and five targets associated with COVID-19 by using docking and MD simulations combined with the molecular mechanics generalized Born surface area (MMGBSA) approach. Energetic and structural analysis showed that the main protease 3CLpro reached the most favorable affinity, followed by importin-α and Nsp9, which shared a similar relationship. Therefore, in vitro activity of IVM can be explained by acting as an inhibitor of importin-α, dimeric 3CLpro, and Nsp9, but mainly over dimeric 3CLpro.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Ivermectin/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Viral Proteins , alpha Karyopherins
4.
Heliyon ; 7(3): e06435, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1118442

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic, resulting in an exponentially increased mortality globally and scientists all over the world are struggling to find suitable solutions to combat it. Multiple repurposed drugs have already been in several clinical trials or recently completed. However, none of them shows any promising effect in combating COVID-19. Therefore, developing an effective drug is an unmet global need. RdRp (RNA dependent RNA polymerase) plays a pivotal role in viral replication. Therefore, it is considered as a prime target of drugs that may treat COVID-19. In this study, we have screened a library of compounds, containing approved RdRp inhibitor drugs that were or in use to treat other viruses (favipiravir, sofosbuvir, ribavirin, lopinavir, tenofovir, ritonavir, galidesivir and remdesivir) and their structural analogues, in order to identify potential inhibitors of SARS-CoV-2 RdRp. Extensive screening, molecular docking and molecular dynamics show that five structural analogues have notable inhibitory effects against RdRp of SARS-CoV-2. Importantly, comparative protein-antagonists interaction revealed that these compounds fit well in the pocket of RdRp. ADMET analysis of these compounds suggests their potency as drug candidates. Our identified compounds may serve as potential therapeutics for COVID-19.

5.
Sci Rep ; 11(1): 4659, 2021 02 25.
Article in English | MEDLINE | ID: covidwho-1104542

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus responsible for coronavirus disease 2019 (COVID-19); it become a pandemic since March 2020. To date, there have been described three lineages of SARS-CoV-2 circulating worldwide, two of them are found among Mexican population, within these, we observed three mutations of spike (S) protein located at amino acids H49Y, D614G, and T573I. To understand if these mutations could affect the structural behavior of S protein of SARS-CoV-2, as well as the binding with S protein inhibitors (cepharanthine, nelfinavir, and hydroxychloroquine), molecular dynamic simulations and molecular docking were employed. It was found that these punctual mutations affect considerably the structural behavior of the S protein compared to wild type, which also affect the binding of its inhibitors into their respective binding site. Thus, further experimental studies are needed to explore if these affectations have an impact on drug-S protein binding and its possible clinical effect.


Subject(s)
COVID-19/virology , Point Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , COVID-19/epidemiology , Drug Discovery , Humans , Ligands , Mexico/epidemiology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , SARS-CoV-2/chemistry , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry
6.
J Mol Model ; 26(12): 340, 2020 Nov 12.
Article in English | MEDLINE | ID: covidwho-921755

ABSTRACT

Among targets selected for studies aimed at identifying potential inhibitors against COVID-19, SARS-CoV2 main proteinase (Mpro) is highlighted. Mpro is indispensable for virus replication and is a promising target of potential inhibitors of COVID-19. Recently, monomeric SARS-CoV2 Mpro, drug repurposing, and docking methods have facilitated the identification of several potential inhibitors. Results were refined through the assessment of dimeric SARS-CoV2 Mpro, which represents the functional state of enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area (MM/GBSA) studies indicated that dimeric Mpro most significantly impacts binding affinity tendency compared with the monomeric state, which suggests that dimeric state is most useful when performing studies aimed at identifying drugs targeting Mpro. In this study, we extend previous research by performing docking and MD simulation studies coupled with an MM/GBSA approach to assess binding of dimeric SARS-CoV2 Mpro to 12 FDA-approved drugs (darunavir, indinavir, saquinavir, tipranavir, diosmin, hesperidin, rutin, raltegravir, velpatasvir, ledipasvir, rosuvastatin, and bortezomib), which were identified as the best candidates for the treatment of COVID-19 in some previous dockings studies involving monomeric SARS-CoV2 Mpro. This analysis identified saquinavir as a potent inhibitor of dimeric SARS-CoV2 Mpro; therefore, the compound may have clinical utility against COVID-19. Graphical abstract.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Protease Inhibitors/pharmacology , Saquinavir/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Betacoronavirus/enzymology , COVID-19 , Coronavirus 3C Proteases , Coronavirus Infections/virology , Cysteine Endopeptidases , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Pneumonia, Viral/virology , Protease Inhibitors/chemistry , Protein Multimerization , SARS-CoV-2 , Saquinavir/chemistry
7.
J Mol Graph Model ; 101: 107762, 2020 12.
Article in English | MEDLINE | ID: covidwho-792833

ABSTRACT

Since the emergence of SARS-CoV2, to date, no effective antiviral drug has been approved to treat the disease, and no vaccine against SARS-CoV2 is available. Under this scenario, the combination of two HIV-1 protease inhibitors, lopinavir and ritonavir, has attracted attention since they have been previously employed against the SARS-CoV main proteinase (Mpro) and exhibited some signs of effectiveness. Recently, the 3D structure of SARS-CoV2 Mpro was constructed based on the monomeric SARS-CoV Mpro and employed to identify potential approved small inhibitors against SARS-CoV2 Mpro, allowing the selection of 15 drugs among 1903 approved drugs to be employed. In this study, we performed docking of these 15 approved drugs against the recently solved X-ray crystallography structure of SARS-CoV2 Mpro in the monomeric and dimeric states; the latter is the functional state that was determined in a biological context, and these were submitted to molecular dynamics (MD) simulations coupled with the molecular mechanics generalized Born surface area (MM/GBSA) approach to obtain insight into the inhibitory activity of these compounds. Similar studies were performed with lopinavir and ritonavir coupled to monomeric and dimeric SARS-CoV Mpro and SARS-CoV2 Mpro to compare the inhibitory differences. Our study provides the structural and energetic basis of the inhibitory properties of lopinavir and ritonavir on SARS-CoV Mpro and SARS-CoV2 Mpro, allowing us to identify two FDA-approved drugs that can be used against SARS-CoV2 Mpro. This study also demonstrated that drug discovery requires the dimeric state to obtain good results.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Lopinavir/chemistry , Lopinavir/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Principal Component Analysis , Protein Conformation , Protein Multimerization , Ritonavir/chemistry , Ritonavir/pharmacology , Viral Nonstructural Proteins/metabolism
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-27406.v1

ABSTRACT

Among targets selected for studies aimed to identify potential inhibitors against COVID-19, SARS-CoV2 main proteinase (Mpro) is highlighted. Mpro is indispensable for virus replication, and is a promising target of potential inhibitors of COVID-19. Recently, monomeric SARS-CoV2 Mpro, drug repurposing and docking methods have facilitated the identification of several potential inhibitors. Results were refined through the assessment of dimeric SARS-CoV2 Mpro, which represents the functional state of enzyme. Docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area (MM/GBSA) studies indicated that dimeric Mpro most significantly impacts binding affinity tendency compared with the monomeric state, which suggesting that dimeric state is most useful when performing studies aimed to identify drugs targeting Mpro. In this study, we extend previous research by performing docking and MD simulation studies coupled with an MM/GBSA approach to assess binding of dimeric SARS-CoV2 Mpro to 12 FDA-approved drugs (darunavir, indinavir, saquinavir, tipranavir, diosmin, hesperidin, rutin, raltegravir, velpatasvir, ledipasvir, rosuvastatin and bortezomib), which were identified as the best candidates for treatment of COVID-19 in some previous dockings studies involving monomeric SARS-CoV2 Mpro. This analysis identified saquinavir as a potent inhibitor of dimeric SARS-CoV2 Mpro, therefore, the compound may have clinical utility against COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL